
There are around 80,000 chemical compounds used in industry, many 
of which are suspected carcinogens. Standard approaches to 
carcinogen testing are costly and time-consuming and, as a result, only 
approximately 1,500 of the chemicals in commercial use have been 
tested. Additionally, some chemicals can have synergistic effects, 
making the characterization of carcinogenic compounds even more 
difficult as combinations have to be considered. 
 The goal of this project is the development of computational 
models of carcinogenicity based on gene expression, to classify the 
carcinogenic potential of individual or complex mixtures of 
environmental pollutants and/or therapeutics, and to study their 
mechanisms of action. To this end, we analyzed the DrugMatrix 
dataset, a large collection of 3610 gene expression microarray profiles 
from rats treated with 188 well-characterized chemicals, including 
genotoxic and non-genotoxic carcinogens, as well as non-carcinogens.  

  
  

All  samples   1380   580   902   641   107   3610  

Untreated   279   113   335   231   36   994  

Genotoxic   233   123   157   324   0   599  

Non-‐Genotoxic   868   344   410   86   71   2017  

Carcinogenic   691   276   308   195   35   1505  

Non-‐Carcinogenic   410   191   259   215   36   1111  

#  Chemicals   110   69   71   56   12   188  

Overview 
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Conclusions 
From this multi-tissue study of gene expression signatures of 
response to chemical exposure, we observed that: 

Expression response to chemical exposure is tissue specific 
Expression-based and chemical structure-based prediction of 
Genotoxicity is an easier task than predicting Carcinogenicity 
Significant within-class response heterogeneity cannot be modeled 
by a simple binary classifier  

  (in terms of # of compounds) is relatively small 
(~100 or less) 
 

Genotoxicity and Carcinogenicity  

 
 

Genotoxicity is defined as the property of being damaging to DNA, thereby being capable of causing mutations and potentially 
cancer. Genotoxicity can be assessed by relatively simple tests, such as the Ames and Salmonella tests, which have 
moderately good sensitivity and specificity. Carcinogenicity is the property of being cancer-causing and while most 
carcinogens are also genotoxic, some are not. Current methods for testing carcinogenicity are based on the 2-year rodent 
bioassay, which is a very expensive and time-consuming testing protocol. Novel, cost-effective and accurate testing methods 
are therefore needed. 

Chemical structure-based prediction 
As an alternative to expression-based classifiers, we used 128 
structural features of all chemical compounds as predictors. 
Random Forest classifiers were repeatedly trained on 70% of 
the data and tested on the remaining 30%. Classification 
thresholds were calibrated on the training set to maximize 
sensitivity. 

Accuracy  %   Specificity  %   Sensitivity  %   Tissues   Compounds   Accuracy  %   Specificity  %   Sensitivity  %  

80.2 92.1 39.8 Liver 110 78.9 95.4 18.6 
82.8 90.2 62.5 Cell Culture 69 74.3 90.9 30.5 
72.2 85.6 39.5 Kidney 71 74.9 89.3 28.9 
80.3 91.3 43.9 All 189 79.6 94.4 26.1 

We used transcript expression values as predictors. A 
candidate set of the 5000 most varying transcripts was selected 
to train and test Random Forests, an ensemble classifier well 
suited for large genomic datasets. Classifier training was 
repeatedly performed on 70% of the data and tested on the 
remaining 30% split to obtain unbiased prediction estimates. 
Classification thresholds were calibrated on the training set to 
maximize sensitivity. 

Gene expression-based prediction 
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Chemical Structure  Gene Expression 

Predicting Genotoxicity and Carcinogenicity 
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Exploratory Data Projection 

Phenotype Strength high                     low 

Comparative Marker Selection 
 

Geno-‐
toxicity  

Carcino-‐
genicity  

Tissue   +      +     

Liver   58   49   42   15  

Kidney   32   25   13   7  

Cell  
Culture   172   313   61   33  

Heart   21   27   5   9  

All   109   80   348   197  
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Tissue Type 
Liver 
Cell Culture 
Heart 
Thigh Muscle 
Kidney 

Future Works 
In order to improve and extend the methods and preliminary 
experimental findings obtained thus far, we will: 

Apply classification methodology to larger datasets to 
incorporate a larger number of compounds during training 
Validate experimental findings on independent datasets 
such as the (TGgates)  
Incorporate the clustering analysis into our predictive 
models. 

2nd Primary 
Component 

Cell-culture:  Liver: 

Signatures Annotation 

p53 independent damage response Oxidative phosphorylation 

Genotoxic vs. Non-Genotoxic Carcinogen vs. Non-Carcinogen 

Gene Set Enrichment Analysis 

Genotoxicity 
DNA-damage response, Cell Cycle 
progression, Metabolism, Apoptosis. 

Carcinogenicity 
Fatty acid oxidation, Metabolism, 
Metabolism of Xenobiotics, Immune 
response, Regenerative proliferation. 

Differential signatures were annotated by enrichment analysis, whereby genesets representing pathways and transcription 
-  

Pathways Enriched 

Accuracy  %   Specificity  %   Sensitivity  %   Tissues   Compounds   Accuracy  %   Specificity  %   Sensitivity  %  

57.6 37.8 69.1 Liver 110 53.6 22.8 76.4 
59.7 53.2 66.0 Cell Culture 69 57.5 19.2 88.6 
53.7 56.2 54.0 Kidney 71 66.0 80.3 48.6 
58.8 50.6 66.7 All 189 55.5 28.5 78.2 

Differential analysis showed the 
presence of strong substructures 
within the dataset, reflecting within-
class response heterogeneity.  
In order to model this substructure, we 
performed tissue-specific consensus 
clustering on all of the samples. This 
analysis identified two reproducible 
clusters in cell culture, and four 
clusters in both kidney and liver.  
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Exposure Modes of Action 
 

Genotoxicity    Carcinogenicity   Class ~ Chemical Structure + Gene Expression  log p(c)1 p(c)( ) =  0 +  cs  Chemical Structure +  ge   Gene Expression

Accuracy  %   Specificity  %   Sensitivity  %   Tissues   Compounds   Accuracy  %   Specificity  %   Sensitivity  %  

79.9 91.6 40.1 Liver 110 56.5 37.3 67.7 
82.6 90.3 61.7 Cell Culture 69 58.5 50.5 65.3 
71.0 85.8 35.4 Kidney 71 57.0 59.4 56.3 
80.5 91.0 45.3 All 189 57.8 48.2 66.8 

Logistic Regression Model 

Consensus clustering  


